Volumetric Properties Under Pressure for 1,2-Dichlorofluoroethane (R141), 1-Fluoro-1,1,2-Trichloroethane (R131a), and 1,2-Dichloro-1,1-Difluoroethane (R132b)

R. Malhotra¹ and L. A. Woolf^{1,2}

Received March 22, 1996

The effect of pressure on the volume of R141, R131, and R132b is reported as volume ratios (the volume under pressure relative to its value at atmospheric pressure) at six temperatures covering the range 278.15 to 338.13 K and pressures up to 380 MPa for R141 and R131a. For R132b the same temperature range has been used, but above its normal boiling point experimental arrangements have limited maximum pressures to below 300 MPa, with some loss of accuracy. Densities have been measured at atmospheric pressure for each liquid. The experimental data have been used to calculate isothermal compressibilities, thermal expansivities, and internal pressures; the change in isobaric heat capacity from its value at atmospheric pressure has also been estimated. The volume ratios for all three compounds can be represented by a version of the Tait equation based on previously reported data for 1,2-dichloroethane and 1,1,2-trichloroethane with the inclusion of allowances for the substitution in the former of chlorine or fluorine for the hydrogens on one of the carbons.

KEY WORDS: compressibility; density; heat capacity; refrigerants; R131a; R132b; R141; Tait equation; thermal expansivity.

1. INTRODUCTION

The compounds chosen for this study are substituted ethanes of commercial quality, which can be regarded as being derived from 1,2-dichloroethane. Each contains a CH_2Cl - group; the hydrogens of the other methyl group are partly or wholly substituted by Cl- and/or F-. This continues investigation

¹Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia.

² To whom correspondence should be addressed.

of a proposal for the prediction of the effect of pressure, p, on the volumetric properties of a related series of compounds [1] which assumed that each of the characteristic groups of the compound made a specific contribution to the *B* parameter of the modified Tait equation for the volume ratio $k = V_p/V(0.1 \text{ MPa})$

$$1 - k = C \log[(B + p)/(B + 0.1)]$$
(1)

The specific contributions were determined by comparison of closely related compounds. The principal criterion for choosing them has been the ability to use a common value of C to represent their k within the required accuracy over the temperature range of the experimental data and to express the complementary B's by a (usually) linear function of the inverse of the reduced temperature $T_R = T/T_c$, where T_c is the critical temperature. The earlier work found that a C of 0.21 was suitable for a number of substituted methanes and ethanes [1].

2. EXPERIMENTS

The R141 (molecular weight, 0.116951 kg \cdot mol⁻¹), R131a (molecular weight, $0.151394 \text{ kg} \cdot \text{mol}^{-1}$), and R132b (molecular weight, 0.134940 $kg \cdot mol^{-1}$) were from PCR Inc. (Gainesville, FL); the manufacturer states for each substance a purity in the range 97–99%. They were distilled before use in the experiments to provide a middle fraction with a boiling range within 72.9-73.0°C for R141, 86.9-87.0°C for R131a, and 45.0-45.1°C for R132b. No analysis was made to check the purity. The effects of impurities on the volumetric properties is minimized when the experimental method, such as that used here, determines the change in volume due to increase in pressure as volume ratios. The densities given in Table I were measured at atmospheric pressure (about 0.09 MPa) with an Anton Paar Model DMA 602 densimeter calibrated frequently with water and dry nitrogen [2]. The densimeter has a resolution of 0.001 kg \cdot m⁻³ and the calibration reproducibility is typically ± 0.002 kg \cdot m⁻³ but for fluorocarbons the reproducibility is usually ± 0.005 kg \cdot m⁻³. The calibration procedure for the DMA 602 has been studied extensively by Ashcroft et al. [3], who showed that extrapolation of the calibration constant to densities of 1580 kg \cdot m⁻³ did not introduce errors greater than 0.05 kg \cdot m⁻³ unless there was a large difference in viscosities. Because boiled samples were found to have higher densities than those that were not boiled, the densities in Table I have been adjusted to refer to the boiled condition where it was not practicable to repeat the measurements. Consequently the overall reproducibility of the densities is estimated as ± 0.1 kg \cdot m⁻³. Temperatures

	Т(К)									
	278.15	288.15	298.14	313.14	323.14	338.13				
	1403.56	1386.41	1369.24	1343.20	1325.36	1298.22				
R131a"	1517.89	1500.34	1482.59	1455.59	1437.34	1409.71				
R1326 [#]	1448.22	1427.66	1406.57	1374.37	[1352.38]	[1318.64]				

Table I. Density (in kg \cdot m⁻³) at Atmospheric Pressure for R141, R131a, and R132b

"The experimental values at 288.15 and 298.14 K were increased by $0.32 \text{ kg} \cdot \text{m}^{-3}$, respectively, so that at all temperatures the results given are those measured or estimated for the sample in the boiled condition.

^{*b*} The value at 288.15 K has been increased by 0.32 kg \cdot m⁻³ (see footnote *a*). Measurements were also made at 283.15 and 293.15 K: 1437.86 and 1417.17 kg \cdot m⁻³. Values above 313.14 K are from a quadratic fit (rmsd 0.04) of the six measured data.

were measured with thermometers calibrated to IPTS-48 and adjusted to ITS-90; they have an accuracy of ± 0.01 K and were constant during experiments to ± 0.005 K. Volume ratios were determined using a bellows volumometer described in detail elsewhere [4]. Because R132b has a normal boiling point below two of the experimental temperatures a modified procedure, described in Ref. 4, has to be used for those measurements. The reliability of the procedure is checked by using it to repeat the volumometer measurements made with the normal procedure at the experimental temperature immediately below the normal boiling point. The pressure measurement system for R141 was that of Ref. 4; but for R131a and R132b, Heise-Bourdon gauges (0-25 and 0-400 MPa) calibrated using dead weight gauges with an accuracy of ± 0.05 % were used.

3. RESULTS AND DISCUSSION

3.1. Volumetric Data

The experimental pressures and volume ratios are given in Tables II-IV. The volume ratios for R141 and R131a at all temperatures are expected to have an accuracy of ± 0.03 -0.05% for pressures of 50 MPa and above, increasing to ± 0.1 % as the pressure approaches 0.1 MPa. For R132b a similar accuracy is expected for the measurements up to 313.14 K, but the second set at that temperature in Table IV, and the measurements at higher temperatures, have an estimated accuracy of ± 0.1 % up to

ρ (MPa)	k	ρ (MPa)	k	ρ (MPa)	k	ρ (MPa)	k
		<u> </u>	T = 27	/8.15 K			
2 547	0 9979	23.96	0 9822	69.23	0.9561	120.63	0 9333
4 996	0.9960	29.57	0.9785	80.10	0.9508	140.36	0.9259
10.013	0.9921	40.04	0.9720	90.16	0.9467	157.97	0.9197
15 787	0.9882	50.09	0.9667	100.61	0.9416	172 32	0.9149
20.155	0.9848	60.07	0.9608	100.01	0.77110		0.7117
			T = 28	8.15 K			
2.547	0.9978	29.68	0.9770	89.65	0.9433	200.07	0.9016
4.996	0.9957	39,69	0.9704	100.37	0.9383	220.87	0.8954
10.473	0.9911	49.77	0.9643	120.14	0.9299	240.57	0.8899
15.364	0.9873	59.80	0.9585	140.53	0.9218	260.12	0.8847
20.058	0.9838	69.74	0.9532	159.67	0.9149	279.81	0.8797
24.064	0.9809	78.88	0.9485	179.38	0.9082		
			T = 29	98.14 K			
2.547	0.9976	28.04	0.9766	139.40	0.9182	249.13	0.8825
4.996	0.9953	38.42	0.9693	158.98	0.9108	274.64	0.8758
10.218	0.9907	58.74	0.9565	179.59	0.9036	299.10	0.8697
15.055	0.9866	78.37	0.9457	199.38	0.8971	325.04	0.8637
19.729	0.9829	99.16	0.9354	225.12	0.8893	352.01	0.8578
24.000	0.9796	118.90	0.9266				
			T = 31	3.14 K			
2.547	0.9972	27.09	0.9745	138.17	0.9115	273,95	0.8670
4.996	0.9946	38.40	0.9658	159.37	0.9031	300.08	0.8603
9.568	0.9901	59.02	0.9518	179.31	0.8958	325.22	0.8542
14.570	0.9853	78.60	0.9402	198.69	0.8892	350.34	0.8485
19.677	0.9807	98.69	0.9296	224.65	0.8810	371.71	0.8439
23.735	0.9773	118.51	0.9201	249.05	0.8738		
			T = 32	23.14 K			
2.547	0.9971	28.80	0.9711	138.98	0.9061	273.94	0.8607
4.996	0.9943	40.79	0.9614	158.97	0.8979	299.61	0.8540
10.659	0.9882	58.53	0.9487	178.68	0.8905	323.27	0.8483
15.173	0.9837	78.40	0.9363	198.62	0.8835	351.92	0.8420
19.524	0.9795	98.64	0.9251	224.29	0.8752	372.79	0.8374
24.045	0.9753	118.74	0.9152	249.50	0.8676		
			T = 33	38.13 K			
2,550	0.9966	28.55	0.9678	138.26	0.8988	274.31	0.8514
5.001	0.9935	40.96	0.9569	159.02	0.8898	299.58	0.8445
9,502	0.9879	58.79	0.9433	179.07	0.8819	325.15	0.8381
14.539	0.9822	79,33	0.9297	199.44	0.8746	350.66	0.8322
19.502	0.9768	99.07	0.9183	224.55	0.8662	382.29	0.8252
24 200	0.9720	119.34	0.9077	249.25	0.8586		

 Table II.
 Volume Ratios for 1,2-Dichlorofluoroethane (R141)

							_
ρ (MPa)	k	ρ (MPa)	k	ρ (MP a)	k	ρ (MPa)	k
			T = 27	8.15 K			
1.987 4.496 10.175 15.470 21.175 25.000	0.9983 0.9962 0.9917 0.9876 0.9835 0.9808	31.02 40.04 60.07 81.04 101.65 126.01	0.9768 0.9711 0.9596 0.9491 0.9397 0.9297	151.26 175.27 201.37 225.44 250.72 277.50	0.9203 0.9121 0.9040 0.8970 0.8902 0.8835	302.69 326.59 342.91 372.76 389.83	0.8775 0.8722 0.8688 0.8628 0.8594
			T = 28	8.15 K			
2.399 4.617 10.353 19.760 24.096 29.124	0.9978 0.9958 0.9908 0.9832 0.9800 0.9764	39.07 59.39 80.06 100.53 125.24 150.80	0.9696 0.9573 0.9463 0.9365 0.9259 0.9161	175.80 201.00 226.82 251.88 277.68	0.9074 0.8993 0.8917 0.8849 0.8783	301.38 325.40 343.26 372.93 388.63	0.8725 0.8670 0.8632 0.8571 0.8539
			T = 29	98.14 K			
2.452 9.899 15.025 20.725 23.521	0.9975 0.9905 0.9860 0.9812 0.9790	27.94 39.35 58.88 76.88 100.09	0.9755 0.9673 0.9548 0.9446 0.9329	125.18 150.58 175.09 200.54 226.02	0.9216 0.9114 0.9026 0.8943 0.8866	252.41 275.94 296.60 322.68	0.8792 0.8730 0.8679 0.8617
			T = 3	13.14 K			
2.820 5.098 10.022 14.473 19.423 24.191	0.9968 0.9943 0.9891 0.9847 0.9801 0.9758	27.75 40.13 58.50 79.27 99.52 125.07	0.9728 0.9632 0.9506 0.9381 0.9273 0.9151	149.55 175.07 200.60 227.05 251.41 275.50	0.9048 0.8951 0.8865 0.8784 0.8714 0.8649	301.80 326.40 344.22 374.03 390.52	0.8581 0.8521 0.8480 0.8417 0.8382
			T = 32	23.14 K			
2.550 4.974 10.073 14.809 19.723 23.694	0.9969 0.9940 0.9883 0.9833 0.9783 0.9746	27.36 38.08 59.08 78.46 99.51 124.05	0.9712 0.9621 0.9468 0.9346 0.9231 0.9111	149.04 175.74 200.03 226.99 250.30 276.14	0.9003 0.8900 0.8815 0.8729 0.8660 0.8589	301.38 324.63 343.72 374.40 388.23	0.8523 0.8466 0.8422 0.8355 0.8326
			T = 3	38.13 K			
4.814 9.939 14.810 23.486 27.060 38.980	0.9936 0.9872 0.9815 0.9722 0.9686 0.9576	58.48 79.06 99.01 124.50 150.05	0.9422 0.9284 0.9168 0.9036 0.8920	174.80 200.87 226.27 251.96 276.36	0.8821 0.8727 0.8644 0.8566 0.8497	301.25 325.38 344.84 374.01 392.64	0.8430 0.8369 0.8323 0.8259 0.8219

Table III.	Volume Ra	tios for	1-Fluoro-1.1.2-	Trichloroethane	(R131a)
------------	-----------	----------	-----------------	-----------------	---------

ρ (MPa)	k						
			T = 27	/8.15 K			
2.618	0.9969	28.04	0.9722	176.52	0.8928	302.10	0.8553
4.798	0.9944	61.80	0.9482	201.10	0.8843	326.27	0.8494
9.750	0.9891	83.41	0.9355	226.28	0.8764	343.31	0.8455
14.549	0.9842	101.94	0.9255	252.52	0.8687	374.10	0.8390
19.223	0.9798	126.91	0.9133	276.34	0.8620	386.63	0.8361
23.769	0.9758	151.48	0.9026				
			T = 28	88.15 K			
2.380	0.9969	27.06	0.9703	151.33	0.8965	301.53	0.8480
4.900	0.9937	40.00	0.9595	177.75	0.8859	325.01	0.8421
9.800	0.9878	61.27	0.9443	201.56	0.8774	343.57	0.8379
14.600	0.9825	80.91	0.9321	226.81	0.8693	373.74	0.8314
19.634	0.9774	101.63	0.9205	252.15	0.8617	388.57	0.8280
22.935	0.9741	126.54	0.9078	276.21	0.8548		
			T = 29	98.14 K			
2.546	0.9963	27.40	0.9666	151.48	0.8898	300.05	0.8406
5.321	0.9924	40.43	0.9547	176.17	0.8796	325.59	0.8341
10.454	0.9856	58.48	0.9407	200.52	0.8705	345.16	0.8295
14.649	0.9805	80.36	0.9263	220.72	0.8637	366.95	0.8246
19.811	0,9746	100.88	0.9145	248.71	0.8549	386.46	0.8204
23.445	0.9707	126.64	0.9012	276.05	0.8470		
			T = 3	3.14 K			
2.380	0.9961	27.36	0.9629	151.35	0.8800	300.70	0.8291
4.572	0.9927	40.77	0.9492	177.16	0.8690	325.47	0.8228
10.251	0.9843	59.52	0.9332	201.40	0.8597	343.54	0.8184
14.975	0.9779	79.91	0.9187	227.21	0.8508	372.98	0.8118
19.574	0.9720	101.22	0.9056	250.36	0.8434	391.58	0.8077
22.710	0.9683	126.25	0.8920	274.82	0.8362		
			T = 31	3.14 K "			
2.691	0.9956	28.93	0.9607	89.01	0.9113	201.02	0.8576
5.099	0.9918	39.25	0.9500	101.00	0.9039	219.33	0.8510
10.262	0.9841	49.04	0.9409	120.69	0.8930	235.50	0.8455
15.084	0.9774	58.62	0.9329	140.56	0.8830	256.79	0.8387
19.850	0.9713	68.58	0.9252	161.27	0.8736	279.44	0.8319
23.372	0.9670	79.59	0.9174	181.14	0.8653		

Table IV. Volume Ratios for 1,2-Dichloro-1,1-Difluoroethane (R132b)

" The values at this and higher temperatures were obtained with the bellows having a volume at 0.1 MPa different from its value at the lower temperatures.

ρ (MPa)	k	p(MPa)	k	p(MPa)	k	ρ (MPa)	k
			T = 32	13.14 K			
2.947	0.9947	28.39	0.9578	88.27	0.9054	200.28	0.8503
5.559	0.9902	38.15	0.9469	99.20	0.8984	220.46	0.8428
10.623	0.9820	48.41	0.9367	119.26	0.8868	238.11	0.8367
15.312	0.9749	58.15	0.9280	140.80	0.8758	260.10	0.8297
20.255	0.9681	68.89	0.9193	161.04	0.8665	278.26	0.8242
23.040	0.9644	78.86	0.9119	181.49	0.8577		
			T = 32	38.13 K			
2.633	0.9947	47.61	0.9292	99.57	0.8876	200.35	0.8377
5.243	0.9896	57.50	0.9194	119.87	0.8757	220.64	0.8302
9.840	0.9811	68.43	0.9099	140.90	0.8645	239.19	0.8240
13.908	0.9740	78.63	0.9019	160.39	0.8550	259.22	0.8177
18.881	0.9660	89.55	0.8942	180.49	0.8459	282.17	0.8103
23.935	0.9584						

Table IV. (Continued)

100 MPa, increasing to ± 0.35 at the highest pressure. The most accurate representation of the k is by the secant bulk modulus equation (SBM),

$$K = p/(1-k) = a_0 + a_1 p + a_2 p^2 + a_3 p^3$$
(2)

for which the coefficients and accuracy of the fit are given in Table V. The k were also fitted to Eq. (1), which enables extrapolation to higher pressures with greater reliability than Eq. (2). (Interpolation and extrapolation of the k for each compound can also be done by using the mean value of the C's and fitting the redetermined B's to a quadratic in T.)

Comparison of such compounds can be made by choosing a value of C, independent of temperature, for each compound in Eq. (1), redetermining the corresponding B's, and representing their temperature dependence by using the inverse of the reduced temperature. The B's for C = 0.21 are given in Table V. There is a loss of accuracy in the reproduction of the experimental k's as a consequence of the use of the fixed C as can be seen from columns 9 and 11 in Table V. The Comparison of those B values at each reduced temperature is made in Fig. 1, which also includes data for 1,2-dichloroethane [5]; the T_c for 1,2-dichloroethane was from Ref. 6, while the Joback group contribution method [7] was used to estimate a T_c of 541.5 K for R141, 546.7 K for R131a, and 498.6 K for R132b.

Malhotra and Woolf

System	<i>a</i> ₀ (MPa)	<i>u</i> ₁	- <i>a</i> ₂ (GPa)	<i>d</i> 3 ¹ (GPa)	$\frac{10^2}{2\langle Ak/k\rangle}$	B (MPa)	C	10^2 $\langle Ak/k \rangle$	<i>B</i> (MPa)	$\frac{10^2}{\langle \varDelta k/k \rangle}$
				<i>T</i> =	= 278.15 K		_			
R141 R131a	1208.34 1161.06	5.9745 5.7888	10.5863	19.972 7.264	0.001	110.25 111.64	0.2081	0.010 0.026	110.78	0.032
R132b	837.26	6.0737	10.1320	12.073	0.050	85.66	0.2208	0.050	77.75	0.101
				<i>T</i> =	= 288.15 K					
R141 R131a	1122.06	5.8149 5.7264	8.7541	12.105	0.007	106.93	0.2152	0.016	102.64	0.030
R132b	751.46	6.0508	10.2840	12.259	0.053	76.34	0.2189	0.060	70,14	0.119
				<i>T</i> =	= 298.14 K					
R141 R131a	1041.95 986.02	5.5952 5.7274	7.0273	7.729 9.144	0.010	100.65 92.50	0.2175	0.024 0.024	94.76 90.67	0.047 0.045
R1326	668.77	5.8232	9.0626	10.258	0.035	65.66	0.2139	0.071	62.65	0.157
	000.00		7 7005	1 =	= 313.14 K		0.2107	0.021	03.00	0.045
R141 R131a	909.88 865.37	5.6968	7.7805	8.690 7.622	0.020	89.37 83.01	0.2187	0.031 0.039	83.08 79.95	0.065 0.067
R132b R132b*	601.84 592.26	5.2032 5.1823	6.5543 7.1999	6.756 8.44 <u>3</u>	0.022	56.83 55.85	0.2141 0.2154	0.046 0.076	54.50 53.33	0.102 0.061
				<i>T</i> =	= 323.14 K					
R141 R131a R132b	850.19 805.88 536.21	5.2618 5.4427 5.0079	6.0339 6.2960 6.4073	6.214 6.003 6.915	0.007 0.013 0.004	81.08 76.09 49.63	0.2173 0.2126 0.2139	0.023 0.041 0.038	76.43 73.84 47.98	0.059 0.062 0.065
				<i>T</i> =	= 338.13 K	<u> </u>				
R141 R131a R132b	738.83 725.39 476.60	5.3645 5.1610 4.3416	6.8669 5.5303 2.6261	7.245 5.087 0.312	0.021 0.015 0.040	71.44 67.96 41.58	0.2174 0.2139 0.2124	0.037 0.032 0.047	66.95 65.56 40.95	0.071 0.048 0.059

Table V. Coefficients of the SBM Equation, Eq. (2), and Tait Equation, Eq. (1)^a

"The values in the last two columns refer to a constant C of 0.21 in Eq. (1).

^b The values for this entry and at higher temperatures for this compound were made with the bellows having a volume at 0.1 MPa different from its value at the lower temperatures.

The method proposed in Ref. 1 for prediction of k's even when limited to a maximum pressure of 200 MPa has errors of 1.0 to 2.1% over the experimental temperature range for R131a and 1.5 to 2.6% for R141; for R132b the differences, as expected, are worse, with the errors ranging from 2.1 to 5.7%. These relatively large errors are due principally to an overestimation of the contribution to the overall B of Eq. (1) by the F- and

Fig. 1. Variation of the optimized *B* value (C = 0.21) in Eq. (1) with the reciprocal of the reduced temperature for (\blacklozenge) 1,2-dichloroethane, (\blacklozenge) R141, (\Box) R131a, and (\bigtriangleup) R132b.

Cl- when these replace H-in 1,2-dichloroethane. The data used in Fig. 1 can be represented by linear equations:

$$B(1.2-\text{DCE}) = -137.912 + 131.802/T_{\rm r}$$
(3)

$$B(R141) = -137.566 + 127.718/T_r$$
(4)

$$B(R131a) = -125.867 + 118.136/T_r$$
(5)

$$B(R132b) = -130.105 + 115.715/T_r$$
(6)

The root mean square deviations (rmsd) in *B* for these equations are, respectively, 0.16, 0.27, 0.44, and 0.57. An analysis of the *B*'s from Eqs. (3)–(6) for $1/T_r = 1.7$ together with the corresponding value for 1,1,2-trichloroethane [8] in terms of the differences in molecular composition produces the following equation:

$$B = -137.912 + 131.802/T_{\rm r} - 4(N_{\rm Cl} - 2) - 6.4N_{\rm F}$$
(7)

where N_{C1} and N_{4} are the number of chlorine and fluorine atoms present in each derivative of 1,2-dichloroethane. Equation (7) reproduces the experimental k for R141 with an rmsd of 0.02 (278.15 K) to 0.07% (338.15 K); for R131a the corresponding results are 0.05 to 0.42%, and for R132b, 0.6 to 0.5%. The better results for R141 are largely a consequence of the similarity of the slopes of Eqs. (3) and (4). The rmsd for R131a and

					p (N	1Pa)				
Property	0.1	10	20	40	60	80	100	150	200	250
				T =	= 278.15	к				
$10^{4} \kappa_{T}$	8.27	7.59	7.02	6.14	5.48	4,98	4.57	3.80		
10 ³ x	1.18	1.13	1.08	1.00	0.93	0.88	0.84	0.76		
AC_p	0.0	~1.3	-2.2	- 3.7	-4.8	- 5.7	- 6.6	-8.2		
				<i>T</i> =	= 288.15	к				
$10^{4} \kappa_{T}$	8.90	8.14	7.50	6.50	5.76	5.20	4.76	3.99	3.44	2.96
$10^3 \alpha$	1.22	1.16	1.11	1.02	0.95	0.89	0.85	0.76	0.67	0.61
AC_p	0.0	-1.5	- 2.7	-4.5	-6.1	- 7.6	- 8.9	-11.7	14.1	-16.4
				<i>T</i> =	= 298.14	к				
$10^{4} \kappa_{T}$	9.59	8.74	8.02	6.90	6.07	5.44	4.95	4.10	3.55	3.12
$10^3 \alpha$	1.25	1.19	1.13	1.04	0.96	0.91	0.86	0.77	0.69	0.63
ΔC_p	0.0	-1.6	-2.8	- 4.8	-6.6	-8.1	- 9.4	-12.4	-14.9	- 17.4
				<i>T</i> =	= 313.14	к				
10 ⁴ 6 T	10.98	9.87	8.95	7.55	6.56	5.83	5.28	4.35	3.75	3.30
10 ³ α	1.33	1.24	1.17	1.07	0.99	0.92	0.87	0.78	0.71	0.66
ΔC_p	0.0	- 1.8	- 3.1	- 5.3	- 7.2	-8.8	-10.3	-13.5	-16.2	- 18.9
				<i>T</i> =	= 323.14	к				
$10^{4}\kappa_{T}$	11.75	10.57	9.59	8.08	6.99	6.18	5.56	4.50	3.84	3.35
$10^3 \alpha$	1.37	1.28	1.20	1.08	1.00	0.94	0.88	0.79	0.73	0.67
ΔC_p	0,0	- 1.9	-3.3	- 5.6	- 7.6	-9.4	-10.9	-14.3	-17.2	- 19.9
				<i>T</i> =	= 338.13	к				
$10^{4}\kappa_{T}$	13.52	11.95	10.68	8.80	7.50	6.56	5.86	4.73	4.04	3.53
10 ³ α	1.43	1.33	1.24	1.11	1.02	0.95	0.90	0.80	0.75	0.70
ΔC_{r}	0.0	-2.1	- 3.6	-6.1	- 8.4	-10.2	-11.9	-15.5	-18.6	-21.6

Table VI.	Isothermal Compressibilities (κ_T ; in MPa ⁻⁴), Isobaric Expansivities (α ; in K ⁻¹	1).
	and Change in Molar Heat Capacity $(AC_p; \text{ in } J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$	
	of 1,2-Dichlorofluoroethane (R141)"	

"The α at pressures up to 150 MPa utilized the volume ratios for all temperatures. Those above 150 MPa are based on data at 288.15 K and the higher temperatures; these α will have a greater uncertainty than at the lower pressures, particularly at 288.15 K.

					<i>p</i> (N	Pa)				
- Property	0.1	10	20	50	100	150	200	250	300	320
				T =	278.15	ĸ				
10^{4} K T	8.60	7.89	7.28	5.93	4.60	3.84	3.34	2.97	2.64	2.52
$10^3 \alpha$	1.15	1.08	1.02	0.90	0.78	0.69	0.63	0.58	0.54	0.53
AC_p	0.0	-1.1	- 2.0	-4.3	-6.7	-8.2	9.6	- 10.9	-12.3	-12.7
				T =	288.15	к				
$10^4 \kappa_{\rm T}$	9.35	8.52	7.82	6.28	4.80	3.97	3.44	3.04	2.71	2.58
$10^3 \alpha$	1.18	1.11	1.04	0.91	0.78	0.70	0.63	0.58	0.55	0.53
AC_p	0.0	-1.2	- 2.1	-4.6	- 7.1	-8.7	- 10.1	-11.6	-13.0	-13.4
				<i>T</i> =	= 298.14	к				
$10^{4} h^{4} r$	10.13	9.17	8.36	6.64	5.04	4,16	3.57	3.11	2.69	2.52
$10^3 x$	1.20	1.13	1.07	0.93	0.79	0.70	0.64	0.59	0.55	0.54
AC_p	0.0	-1.3	-2.3	- 4.9	-7.5	-9.2	-10.7	-12.2	-13.7	- 14.1
				<i>T</i> =	= 313.14	к				
$10^{4} K_{T}$	11.54	10.31	9.30	7.19	5.32	4.34	3.73	3.29	2.91	2.76
10°x	1.24	1.16	1.10	0.95	0.80	0.71	0.65	0.60	0.56	0.54
AC_{p}	0.0	-1.4	- 2.5	- 5.3	8.1	- 10.0	-11.5	-13.2	-14.8	-15.3
				<i>T</i> =	= 323.14	к				
10^{4} K $_{T}$	12.39	11.04	9.93	7.62	5.55	4.47	3.82	3.35	2.97	2.83
$10^3 \alpha$	1.27	1.19	1.12	0.96	0.81	0.71	0.65	0.61	0.56	0.55
AC_p	0.0	-1.5	-2.6	- 5.6	-8.6	-10.5	-12.2	-13.9	-15.5	-16.0
				<i>T</i> =	= 338.13	к				
$10^{4} \kappa_{T}$	13.77	12.20	10.92	8.26	5.93	4.71	3.98	3.48	3.07	2.92
$10^3 \alpha$	1.31	1.22	1.15	0.98	0.81	0.72	0.66	0.62	0.57	0.55
\mathcal{AC}_{p}	0.0	- 1.6	- 2.9	-6.1	-9.3	11.4	13.1	-15.0	- 16.7	-17.3

Table VII. Isothermal Compressibilities (κ_T ; in MPa⁻¹), Isobaric Expansivities (α ; in K⁻¹), and Change in Molar Heat Capacity (ΔC_p ; in J·mol⁻¹·K⁻¹) of 1-Fluoro-1,1,2-Trichloroethane (R131a)

R132b could be decreased, if required, by establishing a set of Eq. (7) to cover the range of 1/T, shown in Fig. 1.

3.2. Compressibilities and Expansivities

The isothermal compressibilities, κ_T , in Tables VI–VIII were calculated from the SBM coefficients in Table V using

$$\kappa_T = -\{1/(p-K)\}\{1-(p/K)(\partial K/\partial p)_T\}$$
(8)

	<i>p</i> (MPa)								
- Property	0.1	10	20	50	100	150	200	250	
			Т	= 278.15 I	ĸ				
$10^{4} \kappa_{T}$	11.93	10.54	9.42	7.21	5.37	4.47	3.90	3.44	
$10^{3}\alpha$	1.40	1.29	1.20	1.02	0.83	0.71	0.62	0.57	
ΔC_{p}	0.0	- 1.9	- 3.2	- 5.9	- 7.8	- 8.6	-9.7	-11.0	
			Т	= 288.15 1	ĸ				
$10^{4} \kappa_{\pm}$	13.29	11.58	10.25	7.67	5.62	4.64	4.05	3.57	
$10^{3}\alpha$	1.45	1.34	1.24	1.03	0.83	0.71	0.63	0.58	
ΔC_p	0.0	- 2.0	- 3.4	- 6.4	- 8.3	-9.1	-10.3	-11.6	
			Т	= 298.14	K				
$10^{4} \kappa_{T}$	14.93	12.88	11.29	8.26	5.89	4.78	4.13	3.62	
10 ³ α	1.51	1.38	1.27	1.05	0.83	0.71	0.63	0.58	
ΔC_p	0.0	-2.1	- 3.7	- 6.8	- 8.8	-9.7	- 10.9	-12.3	
			Т	= 313.14 1	ĸ				
$10^4 \kappa_T$	16.59	14.34	12.57	9.15	6.38	5.05	4.27	3.71	
10 ³ α	1.58	1.45	1.33	1.07	0.84	0.71	0.65	0.59	
ΔC_p	0.0	-2.4	-4.1	7.5	- 9.6	- 10.6	-11.9	-13.4	
			Т	= 313.141	ĸ				
10 ⁴ 67	16.86	14.55	12.75	9.29	6.53	5.19	4.38	3.76	
$10^3 \alpha$	1.58	1.45	1.33	1.07	0.84	0.71	0.65	0.59	
ΔC_p	0.0	-2.4	-4.1	- 7.5	- 9.6	-10.6	-11.9	-13.4	
			Т	= 323.14	К				
10 ⁴ 6'T	18.62	15.92	13.84	9.89	6.80	5.34	4.49	3.87	
10 ³ α	1.64	1.49	1.37	1.09	0.84	0.72	0.65	0.60	
ΔC_p	0.0	-2.5	- 4.3	-8.0	-10.2	-11.2	-12.6	-14.2	
			7	= 338.13	к				
10 ⁴ ۲	20.95	18.00	15.66	11.04	7.26	5.49	4.57	4.09	
10 ³ x	1.71	1.56	1.42	1.11	0.84	0.72	0.67	0.61	
ΔC_p	0.0	-2.8	- 4.8	-8.8	-11.2	-12.2	-13.7	-15.4	

Table VIII. Isothermal Compressibilities (κ_T ; in MPa⁻¹), Isobaric Expansivities (α ; in K⁻¹), and Change in Molar Heat Capacity (ΔC_p ; in J·mol⁻¹·K⁻¹) of 1,2-Dichloro-1,1-Difluoroethane (R132b)

π (MPa) at T (K)									
$(\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	278.15	288.15	298.14	313.14	313.14	323.14	338.13		
			R14	1					
79.8	409	409	409	410		411	410		
80.3	411	410	409	410		410	409		
80.8	412	411	410	410		410	408		
81.3	412	411	410	409		409	407		
81.8	411	410	409	408		408	405		
82.3	410	409	408	407		406	404		
83.3	407	406	405	404		404	402		
			R131	a					
90.0	320	321	323	328		329	333		
91.5	334	336	338	342		344	348		
93.0	345	346	348	352		354	357		
94.5	354	355	356	358		359	360		
96.0	361	361	361	361		361	360		
97.5	367	365	364	362		360	357		
99.5	373	369	366	361		357	351		
			R132	2b					
84.0	278	278	279	278	284	284	284		
85.5	293	292	293	290	294	293	292		
87.0	305	303	302	298	302	299	296		
88.5	316	312	310	303	306	302	296		
90.0	324	319	315	306	308	303	294		
91.5	331	325	319	307	309	302	290		
93.0	337	329	321	308	309	300	285		

Table IX. Internal Pressure, π (MPa), of R141, R131a, and R132b

with the differentiation made analytically. The κ_T for R132b show that it is a much more compressible liquid than R131a and R141, even at similar reduced temperatures. The tables also record isobaric expansivities, α , which were calculated by fitting the isobaric molar volume, V_m , to a quadratic in the temperature, T, and analytically differentiating.

$$\alpha = (1/V_m)(\partial V_m/\partial T)_p \tag{9}$$

 V_m was estimated using the densities from Table I and the k from the SBM coefficients of Table V. The α have an estimated error of $\pm 2-3$ %. The

change in the molar heat capacity, C_p , from its value at 0.1 MPa is given by

$$\Delta C_{P} = C_{p} - C(0.1 \text{ MPa}) = -\int_{0.1}^{P} (TM/\rho) \{ (\partial \alpha/\partial T)_{P} + \alpha^{2} \} dP$$
(10)

where *M* is the molar mass and ρ the density at *p*. The α were represented by a quadratic in *T* to enable analytic differentiation. The ΔC_p given in Tables VI–VIII are estimated to have an error of $\pm 6-8\%$. They all change monotonically with increasing pressure or temperature; those for R141 show the largest change.

3.3. Internal Pressures

The internal pressure, π , given in Table IX was obtained using the relation

$$\pi = T(\partial p/\partial T)_r - p \tag{11}$$

with the derivatives determined analytically from a quadratic fit [2]. The estimated error is ± 2 MPa becoming larger at the extremes of the temperature range. The variation of π with molar volume, V_m , at constant T for either compound is not exceptional: the isotherms for R141 are virtually coincident within the estimated error; there is a similar behavior for those of R131 a above a molar volume of 94.5 cm³ mol⁻¹, while the isotherms for R132b diverge increasingly as the molar volume increases.

4. CONCLUSION

The effect of pressure and temperature on the volume of a fixed mass of any of the liquids R141, R131a, and R132b (and 1,2-dichloroethane) can be reproduced with good precision by Eq. (7), which uses the Tait equation for 1,2-dichloroethane in conjunction with additional contributions for the replacement of the hydrogen atoms on one of the carbons by fluorine and/or chlorine. Equation (7) would be expected to enable interpolations for temperatures within the experimental range of 278.15 to 338.13 K.

REFERENCES

- 1. See e.g., R. Malhotra and L. A. Woolf, High Temp. High Press. 25:179 (1993).
- 2. R. Malhotra and L. A. Woolf, Fluid Phase Equil. 94:227 (1994).
- 3. S. J. Asheroft, D. R. Booker, and J. C. R. Turner, J. Chem. Soc. Faraday Trans. 86:145 (1990).

- 4. R. Malhotra and L. A. Woolf, Int. J. Thermophys. 14:1021 (1993).
- R. Malhotra, W. E. Price, L. A Woolf, and A. J. Easteal, *Int. J. Thermophys.* 11:835 (1990). [The B's for C=0.21 are 127.80 MPa at 278.15 K, 118.68 (288.15), 110.24 (298.14), 98.23 (313.14), 91.08 (323.14), and 80.57 (338.13).]
- 6. J. A. Riddick W. B. Bunger, and T. K. Sakano, Organic Solvents. Physical Properties and Methods for purification, 4th ed. (Wiley-Interscience, New York, 1986).
- 7. R. C. Reid, J. M. Prausnitz, and B. E. Poling, *The Properties of Gases and liquids*, 4th ed. (McGraw-Hill, New York, 1987).
- 8. A. Kumagai, *Int. J. Thermophys.* **10**:1229 (1989). (These data are represented for a C of 0.21, using $T_c = 602$ K, by $B = -133.404 + 130.187/T_r$, with a rmsd of 0.46.)